MOLSEP®
Hollow Fiber Module
General Instructions and Technical Information for the Use of
FS10-FS-FUS0353
Contents

1. Introduction .. 3
2. Handling and Storage 4
3. Planning the Filtration Plant 4
4. Installation of Module 5
5. Start-up, Operation and Shut-down Procedure 5
6. Thermal Sterilization 6
7. Module Cleaning ... 7
8. Module Lifetime ... 7
9. Technical Information of Module 7
1. Introduction

This general instructions and technical information are for the use of MOLSEP® hollow fiber module, Type: FS10-FS-FUS0353, which is specially designed to produce bacteria and pyrogen free water in pharmaceutical, Semi-conductor, food, bio and other processing.

Please read the following contents carefully before handling, design and operation of the modules and their filtration plants. Incorrect handling or operation may lead to decline the performance or even to module damage. In case of questions or problem, please contact us at:

MICRODYN-NADIR GmbH
Kasteler Strasse 45
D-65203 Wiesbaden
Tel.: +49 (0) 611 962-6001
Fax.: +49 (0) 611 962-9237
E-Mail: info@MICRODYN-NADIR.de

NOTE:
The information is based on our latest state of knowledge and is intended to provide only general notes on MOLSEP® Modules. At any time we reserve the right to make modifications due to new developments. Any existing property rights must be observed. MOLSEP® Modules are devices which are intended for use by specially trained personnel only. We do not accept liability for any injury or damaged to persons, equipment or products caused directly or indirectly by the use of the modules offered herein. Any warranty for module delivered in a defective state is limited to replacement of said module only.

MOPSEP® is registered Trademark of DAICEN MEMBRANE-SYSTEMS LTD.

The superior features of the module, FS10-FS-FUS0353, are introduced as follows.

- **High Water Productivity**
 Low membrane resistance of the hollow fiber and the large membrane area, 7.8 m² in the module, succeed in producing enough water quantity even under lower pressure operation.

- **Heat Durable**
 In order to apply hot water sterilization, the hollow fiber in the module is made of heat resistant plastic, Polyethersulfone, and all other module components are also selected from highly heat resistant materials.
 The module was tested and passed severe thermal stress trials in which rapid heating and cooling between 2°C and 98°C was repeated.

- **Excellent Chemical Resistance**
 Because the hollow fiber is made of an excellent plastic, Polyethersulfone, it is resistant to many chemicals in a wide pH range of 1-13. Furthermore the efficiency of the membrane can be easily recovered by using a strong detergent.

- **Distinguished and Sharp Separation Characteristics**
 The hollow fiber membrane molecular weight cut-off is 30,000 Dalton. It can reject not only bacteria and fine particles but also completely reject endotoxins in feed water. Therefore pyrogen free water can be confidently produced by MOPSEP® hollow fiber modules.
Please read the attached module specification before handling, design and operation of the modules and their filtration plants.

2. Handling and Storage

2.1. Condition as Shipping
Unopened, sealed in the original packaging, MOPSEP® hollow fiber module Type FS10-FS-FUS0353 is filled 1000 ppm Benzoic acid as a standard preservative in order to prevent membrane drying and microorganism contamination.

NOTE:
Preservatives act as the disinfectant. Use protective clothing and glasses to avoid contact on the skin and eyes. Avoid swallowing and inhalation of its vapor.

2.2. Storage
- Storage temperature must be maintained between 5°C and 35°C.
- Humidity must not exceed 70%.
- Exposure to direct sunlight or ultraviolet ray from such sources as germicidal lamps, even indoors may deteriorate components of the module. Module should be stored in the dark.
- For a long storage after opening the original package or using it, fill with a preservative such as 2% formalin in the module to prevent contamination of microorganisms.

NOTE:
Avoid storage of modules at temperatures below 5°C in order to prevent freezing.

2.3. Keep Wet
Keep the hollow fiber wet to avoid irreversible damage. Seal the open ports of the module to prevent membrane drying and contamination during detached module storage.

2.4. Careful Handling
The hollow fiber modules are essentially plastic products, so please take care not to damage them by dropping or hitting them during transportation and handling. This may cause the module to break.

3. Planning the Filtration Plant

3.1. Plant Design
In comparison to pumps and piping, the membrane is sensitive to rapid or radical load fluctuations such as
- Pressure shock
- jumps and drops in temperature
- rapid increase of solid matter content respectively viscosity
- rapid changes of feed flow rate
Please consider these useful hints while planning and operating the filtration plant.

NOTE:
Vibrations of the plant may damage the module.

3.2. Piping and Mounting of the module
- Ensure there is no mechanical stress on the connection of the modules and the pipes.
- It is recommended to use flexible pipes/tubing when possible to compensate for the vibrations and thermal expansion of the pipes and module.
- Use air release valves in the piping to prevent air accumulation when it is possible.

4. Installation of Module
- Before installing the modules, flush the piping and system with warm water to remove any residual dirt from the system fabrication. To protect modules from high solid matter contents (e.g. threads) ensure that prefiltration works correctly.
- Open the package and take the module out. In case of any visible damage to the module, please notify MICRODYN-NADIR immediately.
- Open both permeate ports and drain the preservative from shell side first. Next open the feed and concentrate ports and drain them.
- Orient the module so that the flow direction will match the arrow direction on the label, which indicates the feed direction, and the piping connections match the module ports, mount the module on the module platform.
- Make sure the gasket is positioned properly and cleaned, using clamps connect the feed port first and the concentrate port next. Then connect the permeate ports last.
- Check the position of the connections and tighten all clamps reciprocally enough to operate the plant.

NOTE:
- Over-tightening can cause the module ports to break.
- Avoid unnecessary stress at the connections caused by some strain or mismatching of the connector’s positions.

5. Start-up, Operation and Shut-down Procedure
Before plant operation, please read the module specification sheet and confirm operating conditions, do not to operate the plant out of applicable ranges.

5.1. Initial Start-up
For test operation of the filtration plant the quality of the feed water must be higher than tap water such as de-mineralized water. The hollow fiber membrane, as supplied is preserved by 1000 ppm of...
benzoic acid. At initial start-up the module should be flushed for at least 15 min to remove the benzoic acid. All concentrate and permeate should be drained during the flushing period. This flushing also works in degassing the system. It is important that all residual air be removed to avoid an air hammer. Please refer to the attached data sheet for rinsing data of benzoic acid.

When starting the test operation of the plant avoid rapidly increasing the flow and pressure. Gradually adjust the pressure and flow rate to operating conditions. Check the plant for water leaks, if leaks are found shut the plant down to fix the leaks. If there are no problems in the plant then test operation is completed.

5.2. Operation
Please increase flow rate and pressure gradually also for start-up of normal operations.

5.3. Shut-down
Switch off the feed pump then open the necessary valves in order to make sure there in no pressure in the system.

In the case of a long shutdown of the plant, a preservative has to be added to prevent microorganism contamination after module cleaning.

NOTE:
- For the limits of feed inlet or trans-membrane pressures and temperature, please see the module specification. Exceeding the limits may cause damage to the module.
- Rapid opening of valves will cause pressure shock, water hammer, and the pressure will overshoot beyond the limit and may cause damage to the modules.
- Permeate pressure should be lower than the concentrate pressure otherwise back filtration will happen at the module outlet and reduce the water productivity.
- Do not run the module in dead-end filtration mode.

6. Thermal Sterilization
The hollow fiber module, FS10-FS-FUS0353, can be hot water sterilized up to 98°C. Please see the result of rapid heat shock test, which is shown in the attached technical information sheets, “Thermal Durability of the Module”. The module was tested and passed severe thermal stress trials in which rapid heating and cooling between 2°C and 98°C was repeated. However the epoxy potting resin is affected by the higher temperatures to which it softens and the pressure durability decreases. Thus the applicable inlet pressure during sterilization is lower than 0.6 MPa, which is the maximum inlet pressure under room temperature, and the applicable pressure is listed in the Table below.

<table>
<thead>
<tr>
<th>Operating Temperature Range (°C)</th>
<th>0 ~ 50</th>
<th>50 ~ 80</th>
<th>80 ~ 98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Trans-Membrane Pressure (MPa)</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Maximum Feed Inlet Pressure (MPa)</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Maximum Shell Side (Permeate) Pressure (MPa)</td>
<td>0.4</td>
<td>0.3</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Table 1: Applicable Pressure Limits for Different Operating Temperature

The rate of heating up and cooling down for the module must keep less than 10°C per minute. Rapid temperature changes result in mechanical stress, repetition of this may break the module or fatigue it, which leads hollow fibers and other parts to become weaker and damaged.

NOTE:
- Exceeded operating pressure at higher temperatures will damage or break the module
- Heat shocks, such as rapid heating or cooling, may damage the module.

Our recommended hot water sterilization is carried out by circulation of 85°C hot water, which is the permeate temperature, in the system for half an hour.

7. Module Cleaning

Based on experience, water productivity of the module decreases gradually during filtration. Most of fouling on the membrane surface can be removed by chemical cleaning. After chemical cleaning the water productivity of the module will be restored on a high level again.

There is no general cleaning procedure available for all applications and raw water qualities. Optimum cleaning procedures depend on membrane type, application and raw water quality.

In the case of good raw water quality like tap water, we recommend 50-200 ppm Sodium Hypochlorite aq. solution as a cleaning chemical and that the cleaning solution will be circulated in the system for 1-2 hours a week under room temperature. In most cases the cleaning with Sodium Hypochlorite is carried out and combined with the aim of chemical sterilization.

The chemical resistances of the module should be ensured when the cleaning agents and conditions are decided. Please see the attached “Table 1. Chemical Durability of the Module”.

NOTE:
Strong chemicals or conditions above the applicable ranges in the Table 1 decreases the module’s lifetime and may cause damage to the module.

8. Module lifetime

The end of the module’s lifetime has been reached, when chemical cleaning no longer restores membrane performance, to include not only productivity but also the separation characteristics. If the hollow fiber is weakened due to aging or chemical damage during cleanings and can not operate at normal conditions, it needs to be replaced. Please contact us for replacement.

9. Technical Information of the Module

Technical Information of the module is shown in attached data sheets. Please see them and contact us if you need other information which is not in them.
10. Appendix

Challenge Test of Bacterial Elimination

1. Test Module
 FS10-FS-FUS 0353 (Effective Membrane Area : 7.8 m²)

2. Test Procedure
 1) Bacteria
 Serratia marcescens IFO 12648
 2) Procedure
 50L bacteria liquid was prepared by the addition of incubated rich medium to water. This liquid
 was fed to FS10 module and the cross-flow filtration was carried out. Retentate and permeate
 went back to a feed tank and recycled. After 1 min. running, feed liquid and permeate were
 collected. Then the number of living bacteria in the samples was counted by the conventional
 membrane-filter method ¹).

The test apparatus is shown in Fig. 1.

![Fig. 1 Schematic Flow Diagram of Test Apparatus](image)

3) Filtration Conditions
 Feed Flow Rate : 2.0 m³/hr Feed Recovery : 90%
 Feed Inlet Pressure : 0.21 MPa Temperature : 20
3. Results
The results of challenge test, which are listed in Table 1., show no bacteria detection in the permeate of FS10-FS-FUS0353 module.

<table>
<thead>
<tr>
<th>Sampling Time, min</th>
<th>Feed, CFU / ml</th>
<th>Permeate, CFU / 100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.32×10^7</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>8.2×10^4</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>2.5×10^4</td>
<td>0</td>
</tr>
<tr>
<td>180</td>
<td>1.7×10^4</td>
<td>0</td>
</tr>
</tbody>
</table>

Unit : CFU / ml

Table 1. Number of Bacteria in Feed and Permeate

4. References (Japanese Standards)

Challenge Test of Endotoxin Elimination

1. Test Module
FS10-FS-FUS0353 (Effective Membrane Area : 7.8 m²)

2. Test Procedure
1) Endotoxin
 A. Heavy Load Test
 Endotoxin: E. Coli 0111B4
 Concentration: 2,000 ng/ml

 B. Multiple Source Test
 Endotoxin Source: E. Coli 026B6, E. Coli 055b5, E.Coli 0127B8,
 E. Coli 0128B12, S. abortus equi, S. typhimurium
 S. typhosa 0901, S. enteritidis, S. marcescens
 Concentration: 500 ng/ml for each toxins and 4,500ng/ml as a total after mixed-up.

2) Procedure
50L test liquid was fed to FS10 module and the cross-flow filtration was carried out. Retentate and permeate went back to a feed tank and recycled. After 1 min. running, feed liquid and
permeate were collected. Then the concentration of endotoxin in samples was determined by “Limulus HS Test Wako”, of which detection limit was 0.01ng/ml.

3) Filtration Conditions
- Volume of Test Liquid : 50 L
- Temperature : 20ºC
- Feed Flow Rate : 2.0 m³/hr
- Feed Inlet Pressure : 0.21 MPa
- Feed Recovery : 90%

3. Results
The results of challenge test, which are listed in Table 2 and 3, show no detected endotoxin in the permeate of FS10-FS-FUS0353 module.

Table 2. Result of Heavy Load Challenge Test by “A” Liquid

<table>
<thead>
<tr>
<th>Sampling Time, min</th>
<th>Feed</th>
<th>Permeate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,000</td>
<td><0.01</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td><0.01</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td><0.01</td>
</tr>
<tr>
<td>180</td>
<td>1</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Unit : ng / ml
Table 3. Result of Multiple Challenge Test by “B” Liquid

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Quantity</th>
<th>Detection Limit (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,500</td>
<td>< 0.01</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>< 0.01</td>
</tr>
<tr>
<td>60</td>
<td>0.1</td>
<td>< 0.01</td>
</tr>
<tr>
<td>120</td>
<td>4,500 (reloaded)</td>
<td>< 0.01</td>
</tr>
<tr>
<td>130</td>
<td>10</td>
<td>< 0.01</td>
</tr>
<tr>
<td>180</td>
<td>1</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Unit: ng/ml

Elution Test of Module

1. Test Module
FS10-FS-FUS0353 (Effective Membrane Area : 7.8m²)

2. Test Procedure
Elution test of the module was carried out according to modified Japanese standard for medical plastic products.

In the first of test, 80°C pure water was fed into the module until the inside temperature reached 80°C. Then the module was sealed and soaked in water bath to keep inside temperature 80°C for 1 hour. After that, an effluent sample was obtained from inside the module and analyzed.
3. Results
The results of elution test are listed in Table 4. The module, FS10-FS-FUS0353, passed all test Items.

<table>
<thead>
<tr>
<th>Test Items</th>
<th>Standard</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Colorless</td>
<td>Pass</td>
</tr>
<tr>
<td>Bubbling</td>
<td>Disappear within 3 min</td>
<td>Pass</td>
</tr>
<tr>
<td>pH</td>
<td>Difference from Blank within 1.5</td>
<td>Pass</td>
</tr>
<tr>
<td>Sodium Salts</td>
<td>Less than 2.5 μg/ml</td>
<td>Pass</td>
</tr>
<tr>
<td>Sulfate Salts</td>
<td>Less than 4.8 μg/ml</td>
<td>Pass</td>
</tr>
<tr>
<td>Phosphate Salts</td>
<td>Less than 0.15 μg/ml</td>
<td>Pass</td>
</tr>
<tr>
<td>Ammonium Compounds</td>
<td>Less than 0.5 μg/ml</td>
<td>Pass</td>
</tr>
<tr>
<td>COD$_{Mn}$, mg/L</td>
<td>Difference from Blank within 1.0 mg/L</td>
<td>Pass</td>
</tr>
<tr>
<td>Evaporated Residuals</td>
<td>Less than 1.0 mg/L</td>
<td>Pass</td>
</tr>
<tr>
<td>UV Absorbance, 200-241 nm</td>
<td>Less than 0.08 Abs.</td>
<td>Pass</td>
</tr>
<tr>
<td>UV Absorbance, 241-350 nm</td>
<td>Less than 0.05 Abs</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Table 4. Results of Elution Test

4. References (Japanese Standard)
1) 10th Japanese Pharmacopoeia, “Test Method of Plastic Bag for Infusion”
Elution Test of Module Material

1. Test Module
FS10-FS-FUS0353 (Effective Membrane Area : 7.8m²)

2. Test Procedure
Elusion test of the module was carried out according to Japanese standard for medical plastic products.
- Eluants: Pure Water 200ml (Specific Conductivity > 18 MΩcm)
- Surface Area of Samples: 600 cm²
- Temperature: 121°C
- Elution Time: 1 hour

3. Results
The results of elution test are listed in Table 5. All components of the module, FS10-FS-FUS0353, passed all test items.

<table>
<thead>
<tr>
<th>Test Items</th>
<th>Standard</th>
<th>Hollow Fiber</th>
<th>Potting Resin</th>
<th>Case</th>
<th>O-Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Colorless</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Bubbling</td>
<td>Disappear within 3 min</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>pH</td>
<td>Difference from Blank within 1.5</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Sodium Salts</td>
<td>Less than 2.5 μg/ml</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Sulfate Salts</td>
<td>Less than 4.8 μg/ml</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Phosphate Salts</td>
<td>Less than 0.15 μg/ml</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Ammonium Compounds</td>
<td>Less than 0.5 μg/ml</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>CODₘₚ, mg/L</td>
<td>Difference from Blank within 1.0 mg/L</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Evaporated Residuals</td>
<td>Less than 1.0 mg/L</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>UV Absorbance, 200-241 nm</td>
<td>Less than 0.08 Abs.</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>UV Absorbance, 241-350 nm</td>
<td>Less than 0.05 Abs.</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
</tr>
</tbody>
</table>

* These results were not passed at 121°C but passed at 100 °C

Table 5. Results of Elution Test

4. References (Japanese Standard)
1) 10th Japanese Pharmacopoeia, “Test Method of Plastic Bag for Infusion”
Elution Test of Module Material for Inorganic Matter

1. Test Module
FS10-FS-FUS0353 (Effective Membrane Area : 7.8m²)

2. Test Procedure
Elusion test of the module was carried out as follows.
All samples of the module components were soaked in pure water at 100°C for 1 hour, then the effluents were analyzed.

Eluants : Pure Water 600ml (Specific Conductivity > 18 MΩcm)
Sample Weight : 30 g
Temperature : 100°C
Elution Time : 1 hour
3. Results

The results of elution test for inorganic matter is listed in Table 6. All components of the module, FS10-FS-FUS0353, showed very low elution for inorganic matter.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Analysis Method</th>
<th>Detection Limits</th>
<th>Blank</th>
<th>Hollow Fiber</th>
<th>Potting Resin</th>
<th>Case</th>
<th>O-Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>Flame Atomic Absorption</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>22</td>
</tr>
<tr>
<td>K</td>
<td>Flame Atomic Absorption</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Mg</td>
<td>Flame Atomic Absorption</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>5.5</td>
</tr>
<tr>
<td>Ca</td>
<td>Flameless Atomic Absorption</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>Al</td>
<td>Flameless Atomic Absorption</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Si</td>
<td>Flameless Atomic Absorption</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Zn</td>
<td>Flameless Atomic Absorption</td>
<td>0.5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.6</td>
</tr>
<tr>
<td>Fe</td>
<td>Flameless Atomic Absorption</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cu</td>
<td>Flameless Atomic Absorption</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sn</td>
<td>Flameless Atomic Absorption</td>
<td>20</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pb</td>
<td>Flameless Atomic Absorption</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Ion Chromatography</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>15</td>
</tr>
<tr>
<td>F⁻</td>
<td>Ion Chromatography</td>
<td>50</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>20</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>Ion Chromatography</td>
<td>20</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>Ion Chromatography</td>
<td>30</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PO₄³⁻</td>
<td>Ion Chromatography</td>
<td>30</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total Surface Area of 30g sample (cm²)</td>
<td></td>
<td>4500</td>
<td>200</td>
<td>600</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent module number as sample</td>
<td></td>
<td>0.056</td>
<td>0.076</td>
<td>3.3</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units: ppb ND: No Detected

Table 6. Results of Elution Test for Inorganic Matter
Chemical Durability of Module

Test Module: FS10-FS-FUS0353 (Effective Membrane Area : 7.8m²)

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Concentration</th>
<th>Temperature</th>
<th>Time</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochloric Acid</td>
<td>0.1N</td>
<td>80°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>0.5N</td>
<td>80°C</td>
<td>30 Days</td>
<td>×</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>0.1N</td>
<td>60°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>0.1N</td>
<td>60°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>1N</td>
<td>60°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td>Sodium Hypochlorite</td>
<td>1%</td>
<td>25°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>60°C</td>
<td>30 Days</td>
<td>△</td>
</tr>
<tr>
<td>Formalin</td>
<td>3%</td>
<td>80°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>35%</td>
<td>25°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>35%</td>
<td>80°C</td>
<td>30 Days</td>
<td>×</td>
</tr>
<tr>
<td>Ethanol</td>
<td>100%</td>
<td>25°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>25°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>70%</td>
<td>25°C</td>
<td>30 Days</td>
<td>×</td>
</tr>
<tr>
<td>Sodium Hydroxide</td>
<td>1N</td>
<td>60°C</td>
<td>30 Days</td>
<td>○</td>
</tr>
</tbody>
</table>

Judgment: ○ ; No Influenced △ ; Slightly Influenced × ; Damaged

Table 1. Chemical Durability of FS10-FS-FUS 0353 Module
Thermal Durability of Module

1. Sample Module
Test Module: FS10-FS-FUS0353 (Effective Membrane Area : 7.8m²)

2. Heat Shock Test
Heat shock test of module was carried out by feeding hot and cold water alternately into the module in short period. After 100 times of heat shocks the module was examined by air leak test to test the module’s integrity.

3. Conditions
 1) Operation
 Feed Water : UF treated pure water
 Feed Pressure : 0.1 MPa
 Feed Flow Rate : 0.5 – 1.2 m³/hr
 Permeation Rate : 0.3 – 1.0 m³/hr

 2) Thermal Conditions
 Hot Water : 98 – 99ºC
 Cold Water : 2 – 5ºC
 Heating and Cooling speed : >50ºC/min
 Repetition : 100 Times

4. Result
No leakage and damage were observed in the module, especially both on fibers and potting resin.